sábado, 25 de febrero de 2012


CARBOHIDRATOS


Los carbohidratos o hidratos de carbono son los surtidores principales de la energí­a del cuerpo.

Podemos distinguir dos tipos de carbohidratos:

SIMPLES

·         Monosacáridos: glucosa o fructosa

·         Disacáridos: formados por la unión de dos monosacáridos iguales o distintos: lactosa, maltosa, sacarosa, etc.

·         Oligosacáridos: polímeros de hasta 20 unidades de monosacáridos.

COMPLEJOS

·         Polisacáridos: están formados por la unión de más de 20 monosacáridos simples.

·         Función de reserva: almidón, glucógeno y dextranos.

·         Función estructural: celulosa y xilanos.



Los carbohidratos, hidratos de carbono o glúcidos son sustancias compuestas de carbono, hidrógeno y oxígeno, con 2 átomos de carbono por cada 1 de oxígeno. Su fórmula empírica es CnH2nOn .
Son aldehidos o cetonas polihidroxilados: cada átomo está unido a una función alcohol, excepto uno que lo está a una función aldehido o cetona.
Los más simples no pueden ser hidrolizados, son las unidades básicas de los glúcidos. 
Se encuentran ampliamente distribuidos por la naturaleza y están presentes en todos los seres vivos

CLASIFICACIÓN


Según sus características estructurales se pueden dividir en cuatro grupos: a) Monosacáridos, b) Oligosacáridos, c) Polisacáridos y c) Glucosaminoglicanos



MONOSACÁRIDOS
Tienen una estructura molecular con dos a nueve átomos de carbono que se unen a grupos hidroxilo

Aldosas y cetosas : triosas, tetrosas, pentosas, hexosas, heptosas..

Osidos
Holósidos : oligosacáridos (disacáridos, trisacáridos), polisacáridos (homopolisacáridos, heteropolisacáridos).
Heterósidos : glucoproteidos, glucolípidos, glúcidos de los ácidos nucléicos

Monosacáridos (azúcares simples)

Hexosas

Glucosa 
Fisiológicamente es el azúcar más importante, se transporta en la sangre y es utilizado por los tejidos.
Fuentes: miel, frutas, jarabe de maíz, uvas y maíz dulces, producto de la hidrólisis del almidón y de la caña de azúcar.

Fructosa 
Se convierte a glucosa en el hígado y en el intestino, metabolito intermediario en el fraccionamiento del glucógeno.
Fuentes : miel, frutas maduras y algunos vegetales, producto de la hidrólisis de la sacarosa e inulina.

Galactosa
Se convierte a glucosa en el hígado, sintetizada en el organismo para producir lactosa, constituyente de los glucolípidos.
Fuentes: no se encuentra en estado natural, producto final de la digestión de la hidrólisis de la lactosa.

Manosa
Constituyente de polisacáridos de albúminas, globulinas y mucoides.
Fuentes: legumbres, hidrólisis de manosas de plantas y gomas.

Pentosas

Arabinosa
No se conocen funciones fisiológicas, en el hombre.
Fuentes: no se encuentra libre en la naturaleza , producto derivado de la goma arábiga y de las gomas de ciruelas y cerezas.

Ribosa
Elemento estructural de los ácidos nucléicos, ATP y coenzimas NAD y FAD
Fuentes: derivados del ácido nucléico de carnes y pescados

Ribulosa
Producto intermediario en la vía de oxidación directa del fraccionamiento de la glucosa.
Fuentes: se origina en los procesos metabólicos

Xilosa
Se digiere con dificultad y no se le conocen funciones fisiológicas, utilizada como alimento para diabéticos.
Fuentes: gomas de compuestos leñosos, mazorca de maíz y cáscaras de cacahuete, no se encuentra libre en la naturaleza.

Oligosacáridos (2 a 10 unidades azúcares)

DISACÁRIDOS


Sacarosa
Se hidroliza a glucosa y fructosa , azúcar no-reductor.
Fuentes: azúcar de caña y de remolacha, jarabe de arce, melazas y sorgo.

Maltosa
Se hidroliza a dos moléculas de glucosa, un azúcar reductor , no se encuentra libre en la naturaleza.
Fuentes: productos malteados y cereales germinados, producto intermediario de la digestión de almidón.

Lactosa
Se hidroliza a glucosa y galactosa, puede presentarse en la orina durante el embarazo, un azúcar reductor.
Fuentes: leche y productos lácteos, se produce en el organismo a partir de la glucosa.

Trisacáridos

Rafinosa
Solo parcialmente digerible pero puede hidrolizarse a glucosa, fructosa y galactosa por enzimas de las bacterias intestinales.
Fuentes : semillas de algodón, melazas y azúcar de remolacha y tallos.

Melicitosa
Compuesto de una unidad de fructosa y dos de glucosa.
Fuentes : miel, álamos y coníferas.

Polisacáridos (más de 10 unidades de azúcares)

Pueden ser digeribles, parcialmente digeribles o indigeribles

Digeribles
a) Glucógeno. Polisacárido que se encuentra en animales. Es la forma de depósito de los carbohidratos en los organismos, principalmente en hígado y músculos. Sus fuentes principales son carnes y pescados.
b) Almidón. Es la fuente más importante de carbohidratos y la forma de depósito de los carbohidratos en las plantas. Consta principalmente de amilosa y amilopectina y se hidroliza a glucosa. Sus principales fuentes son granos de cereales, frutas no maduras, verduras, legumbres y tubérculos.
c) Dextrina. Producto formado durante el curso del fraccionamiento del almidón. Se encuentra en pan tostado y en productos intermediarios de la digestión del almidón.

Parcialmente digeribles 
a) Inulina. Se hidroliza a fructosa. Se utiliza en investigación fisiológica para la determinación de la filtración glomerular. Las principales fuentes son tubérculos y raíces de dalias, alcachofas, dientes de león, cebollas y ajos.
b) Manosano. Se hidroliza a manosa, aunque la digestión es incompleta. Puede ser desdoblado por las bacterias del intestino grueso. Se encuentra en legumbres y gomas de plantas.

Indigeribles (fibra dietética)
Consta de dos grupos: a) fibra dietética insoluble (celulosa, ligina y cutina) que son los compuestos orgánicos más abundantes en el mundo, y b) fibra dietética soluble (hemicelulosa, pectinas, gomas y alfa-polisacáridos.
a) Celulosa. Al no ser atacable por las enzimas digestivas del hombre, es una importante fuente de “cuerpo voluminoso”, de la dieta. Es parcialmente desdoblada a glucosa por la acción bacteriana del intestino grueso. Se encuentra en pieles de frutas, cubiertas externas de las semillas y de tallos y hojas de vegetales.
b) Hemicelulosa y pectina. Compuestos menos polimerizados que la celulosa. Pueden ser digeridas parcialmente por las enzimas digestivas, dando origen a xilosa. La principales fuentes son fibras leñosas y hojas.

Azúcar-alcoholes 

Se trata de polialcoholes, obtenidos por hidrogenación de carbohidratos de bajo peso molecular. Son: 
a) Sorbitol. Es un hexitol, sustituto del azúcar, posee un 50% de poder dulcorante que la sacarosa, pero con semejante valor energético. Se absorbe lentamente y posee metabolismo independiente de la insulina.
b) Xilitol. Es un pentitol, sustituto del azúcar, tiene poder edulcorante y valor energético semejante a sacarosa: Se absorbe lentamente. Se adiciona a los dulces por su escaso poder cariogénico.
c) Maltitol. Es un hexitol, sustituto del azúcar, tiene 75 % de poder edulcorante que la sacarosa y es utilizado en alimentos con reducción del valor energético
d) Manitol. Es un hexitol, sustituto del azúcar, tiene 45% del poder edulcorante de la sacarosa. De lenta absorción. Se obtiene por hidrogenación del azúcar invertido/fructosa y por dehidrogenación de la manosa, se encuentra en el maná del arbol del maná (Fraxinus ornus,Oleácea), hongos, algas, etc.: También se obtiene por procesos de fermentación.

Glusoaminoglucanos

Glucosaminoglucanos y proteoglucanos son dos términos utilizados para referirse a algunos de las estructuras macromoleculares complejas que existen en el cartílago. Entre los glucosaminoglucanos se incluyen el ácido hialurónico y el condroitin-sulfato. Acido hialurónico es el único glucosaminoglucano sin proteína unida covalentemente. Los proteoglucanos son grandes agregados de proteínas y oligosacáridos que se encuentran en cartílago, hueso y otros tipos de tejido conectivo. El proteoglicano del cartílago tiene un peso molecular total de más de 4 millones.

ALTERACIONES DEL METABOLISMO DE LOS CARBOHIDRATOS

·         1. Alteraciones del metabolismo de los carbohidratos

·         2. Digestión de almidón Oligosacaridas Intolerancia a los disacárido Intolerancia hereditaria la sacarosa y a la isomaltosa Intolerancia hereditaria a la lactosa Intolerancia adquirida a la lactosa.

·         3. Digestión de almidón Esta constituido por dos tipo de polisacáridos. Amilasa y amilopectina. Formada por molécula de glucosa.

·         4.  

·         5. Oligosacaridas El complejo glucoamilasa,el complejo sacarasaisomaltasa, el complejo trehalasa, y el complejo B galactosidasa. todas ella están presentes al nacer son lipoproteínas que se encuentra En la membrana de la célula del epitelio intestinal.

·         6. Intolerancia hereditaria a la lactosa Es posible que se transmita de forma reseciva. aparecen precozmente síntomas clínico como diarreas y deshidratación.

·         7. Intolerancia adquirida a la lactosa. Los exámenes bioquímicas deben realizarse a toda persona que presenten diarrea acuosa y dolores abdominales después de la ingestión de leche, almidón o sacarosa. La hiperglucemia debe de ser de 250mg/dl.

·         8. Alteración del metabolismo de los monosacáridos.
·         10. Alteración del metabolismo de la fructosa Es el mas dulce de los azucares sencillos y se encuentra en la concentración altas como la miel, las frutas y algunos vegetales. La fructosuria esencial.error metabólico congénito benigno debido a la ausencia de fructoquinasa.

·         11. galactocemia Principal fuente de galactosa del organismo es la lactosa que es el azúcar de la leche. transcurre su metabolismo a través de su conversión en glucosa.

·         12. Deficiencia de galactoquinasa Deficiencia de galactosa


viernes, 10 de febrero de 2012

EL AGUA


EL AGUA
Nombre común que se aplica al estado líquido del compuesto de hidrógeno y oxígeno H2O. Los antiguos filósofos consideraban el agua como un elemento básico que representaba a todas las sustancias líquidas. Los científicos no descartaron esta  hasta la última mitad del siglo XVIII. En 1781 el químico británico Henry Cavendish sintetizó agua detonando una mezcla de hidrógeno y aire. Sin embargo, los resultados de este experimento no fueron interpretados claramente hasta dos años más tarde, cuando el químico francés Antoine Laurent de Lavoisier propuso que el agua no era un elemento sino un compuesto de oxígeno e hidrógeno. En un documento científico presentado en 1804, el químico francés Joseph Louis Gay-Lussac y el naturalista alemán Alexander von Humboldt demostraron conjuntamente que el agua consistía en dos volúmenes de hidrógeno y uno de oxígeno, tal como se expresa en la fórmula actual H2O.
Propiedades Físicas Del Agua
1) Estado físico: sólida, liquida y gaseosa
2) Color: incolora
3) Sabor: insípida
4) Olor: inodoro
5) Densidad: 1 g./c.c. a 4°C
6)  de congelación: 0°C
7) Punto de ebullición: 100°C
8) Presión critica: 217,5 atm.
9) Temperatura critica: 374°C

El agua químicamente pura es un liquido inodoro e insípido; incoloro y transparente en capas de poco espesor, toma  azul cuando se mira a través de espesores de seis y ocho metros, porque absorbe las radiaciones rojas. Sus constantes físicas sirvieron para marcar los puntos de referencia de la escala termométrica Centígrada. A la presión atmosférica de 760 milímetros el agua hierve a temperatura de 100°C y el punto de ebullición se eleva a 374°, que es la temperatura critica a que corresponde la presión de 217,5 atmósferas; en todo caso el calor de vaporización del agua asciende a 539 calorías/gramo a 100°.
Mientras que el hielo funde en cuanto se calienta por encima de su punto de fusión, el agua liquida se mantiene sin solidificarse algunos grados por debajo de la temperatura de cristalización (agua subenfriada) y puede conservarse liquida a –20° en tubos capilares o en condiciones extraordinarias de reposo. La solidificación del agua va acompañada de desprendimiento de 79,4 calorías por cada gramo de agua que se solidifica. Cristaliza en el sistema hexagonal y adopta formas diferentes, según las condiciones de cristalización.
A consecuencia de su elevado calor especifico y de la gran cantidad de calor que pone en juego cuando cambia su estado, el agua obra de excelente regulador de temperatura en la superficie de la Tierra y más en las regiones marinas.
El agua se comporta anormalmente; su presión de vapor crece con rapidez a medida que la temperatura se eleva y su volumen ofrece la particularidad de ser mínimo a la de 4°. A dicha temperatura la densidad del agua es máxima, y se ha tomado por unidad. A partir de 4° no sólo se dilata cuando la temperatura se eleva,. sino también cuando se enfría hasta 0°: a esta temperatura su densidad es 0,99980 y al congelarse desciende bruscamente hacia 0,9168, que es la densidad del hielo a 0°, lo que significa que en la cristalización su volumen aumenta en un 9 por 100.
Las propiedades físicas del agua se atribuyen principalmente a los enlaces por puente de hidrógeno, los cuales se presentan en  número en el agua sólida, en la red cristalina cada átomo de la molécula de agua está rodeado tetraédricamente por cuatro átomos de hidrógeno de otras tantas moléculas de agua y así sucesivamente es como se conforma su estructura. Cuando el agua sólida (hielo) se funde la estructura tetraédrica se destruye y la densidad del agua líquida es mayor que la del agua sólida debido a que sus moléculas quedan más cerca entre sí, pero sigue habiendo enlaces por puente de hidrógeno entre las moléculas del agua líquida. Cuando se calienta agua sólida, que se encuentra por debajo de la temperatura de fusión, a medida que se incrementa la temperatura por encima de la temperatura de fusión se debilita el enlace por puente de hidrógeno y la densidad aumenta más hasta llegar a un valor máximo a la temperatura de 3.98ºC y una presión de una atmósfera. A temperaturas mayores de 3.98 ºC la densidad del agua líquida disminuye con el  de la temperatura de la misma manera que ocurre con los otros líquidos.
Propiedades Químicas del Agua
1)Reacciona con los óxidos ácidos
2)Reacciona con los óxidos básicos
3)Reacciona con los metales
4)Reacciona con los no metales
5)Se une en las  formando hidratos
1)Los anhídridos u óxidos ácidos reaccionan con el agua y forman ácidos oxácidos.
2) Los óxidos de los metales u óxidos básicos reaccionan con el agua para formar hidróxidos. Muchos óxidos no se disuelven en el agua, pero los óxidos de los metales activos se combinan con gran facilidad.
3) Algunos metales descomponen el agua en  y otros lo hacían a temperatura elevada.
4)El agua reacciona con los no metales, sobre todo con los halógenos, por ej: Haciendo pasar carbón al rojo sobre el agua se descompone y se forma una mezcla de monóxido de carbono e hidrógeno (gas de agua).
5)El agua forma combinaciones complejas con algunas sales, denominándose hidratos.
En algunos casos los hidratos pierden agua de cristalización cambiando de aspecto, y se dice que son eflorescentes, como le sucede al sulfato cúprico, que cuando está hidratado es de color azul, pero por pérdida de agua se transforma en sulfato cúprico anhidro de color blanco.

Por otra parte, hay sustancias que tienden a tomar el vapor de agua de la atmósfera y se llaman hidrófilas y también higroscópicas; la sal se dice entonces que delicuesce, tal es el caso del cloruro cálcico.
El agua como compuesto quimico:
Habitualmente se piensa que el agua natural que conocemos es un compuesto químico de fórmula H2O, pero no es así, debido a su gran capacidad disolvente toda el agua que se encuentra en la naturaleza contiene diferentes cantidades de diversas sustancias en solución y hasta en suspensión, lo que corresponde a una mezcla.

El agua químicamente pura es un compuesto de fórmula molecular H2O. Como el átomo de oxígeno tiene sólo 2 electrones no apareados, para explicar la formación de la molécula H2O se considera que de la hibridación de los orbitales atómicos 2s y 2p resulta la formación de 2 orbitales híbridos sp3. El traslape de cada uno de los 2 orbitales atómicos híbridos con el orbital 1s1 de un átomo de hidrógeno se forman dos enlaces covalentes que generan la formación de la molécula H2O, y se orientan los 2 orbitales sp3 hacia los vértices de un tetraedro triangular regular y los otros vértices son ocupados por los pares de electrones no compartidos del oxígeno. Esto cumple con el principio de exclusión de Pauli y con la tendencia de los electrones no apareados a separarse lo más posible.
Experimentalmente se encontró que el ángulo que forman los 2 enlaces covalentes oxígeno-hidrógeno es de 105º y la longitud de enlace oxígeno-hidrógeno es de 0.96 angstroms y se requiere de 118 kcal/mol para romper uno de éstos enlaces covalentes de la molécula H2O. Además, el que el ángulo experimental de enlace sea  que el esperado teóricamente (109º) se explica como resultado del efecto de los 2 pares de electrones no compartidos del oxígeno que son muy voluminosos y comprimen el ángulo de enlace hasta los 105º.
Las fuerzas de repulsión se deben a que los electrones tienden a mantenerse separados al máximo (porque tienen la misma carga) y cuando no están apareados también se repelen (principio de exclusión de Pauli). Además núcleos atómicos de igual carga se repelen mutuamente.
Las fuerzas de atracción se deben a que los electrones y los núcleos se atraen mutuamente porque tienen carga opuesta, el espín opuesto permite que 2 electrones ocupen la misma región pero manteniéndose alejados lo más posible del resto de los electrones.
La estructura de una molécula es el resultado neto de la interacción de las fuerzas de atracción y de repulsión (fuerzas intermoleculares), las que se relacionan con las cargas eléctricas y con el espín de los electrones.
De acuerdo con la definición de ácido y álcali de Brönsted-Lowry, los 2 pares de electrones no compartidos del oxígeno en la molécula H2O le proporciona características alcalinas. Los 2 enlaces covalentes de la molécula H2O son polares porque el átomo de oxígeno es más electronegativo que el de hidrógeno, por lo que esta molécula tiene un momento dipolar electrostático igual a 6.13x10-30 (coulombs)(angstrom), lo que también indica que la molécula H2O no es lineal, H-O-H.
El agua es un compuesto tan versátil principalmente debido a que el tamaño de su molécula es muy pequeño, a que su molécula es buena donadora de pares de electrones, a que forma puentes de hidrógeno entre sí y con otros compuestos que tengan enlaces como: N-H, O-H y F-H, a que tiene una constante dieléctrica muy grande y a su capacidad para reaccionar con compuestos que forman otros compuestos solubles.
El agua es, quizá el compuesto químico más importante en las actividades del hombre y también más versátil, ya que como reactivo químico funciona como ácido, álcali, ligando, agente oxidante y agente reductor.

                                                     
LA FUNCION DEL AGUA:
La función principal del  agua es el de limpiar.  Su uso externo e interno es de gran beneficio.  El cuerpo esta compuesto de más del 50% de agua.  Si perdemos solamente el 10% de agua no vemos en gran peligro.  El agua que bebemos se esfuma en el aliento, el sudor, la orina.  El agua que se pierde se debe reponer si queremos vivir una vida sana.
BENEFICIOS DEL AGUA:
1. Ayuda en el proceso de la digestión.
2.  Agente que conduce nutrición a las células y aleja las impurezas.
3. Ayuda a mantener la temperatura normal del cuerpo y circula los líquidos de una parte del cuerpo a otra.
4.  El agua es importante para el sistema de filtración del cuerpo, como lo son los riñones.
Se recomienda - para beber, obtener la mejor agua posible que no esté contaminada, que no tenga cloro ni fluorina.  Se deben beber por lo menos 8 vasos de agua diarios.  Recuerde no beber agua con sus alimentos.  La digestión es un proceso dilata el proceso químico.