jueves, 7 de junio de 2012


ACIDOS NUCLEICOS
Los ácidos nucleicos son grandes polímeros formados por la repetición de monómeros denominados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, así, largas cadenas; algunas moléculas de ácidos nucleicos llegan a alcanzar tamaños gigantescos, con millones de nucleótidos encadenados. Los ácidos nucleicos almacenan la información genética de los organismos vivos y son los responsables de la transmisión hereditaria. Existen dos tipos básicos, el ADN y el ARN.
El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico. Posteriormente, en 1953, James Watson y Francis Crick descubrieron la estructura del ADN, empleando la técnica de difracción de rayos X.
Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y un grupo fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.
La unidad formada por el enlace de la pentosa y de la base nitrogenada se denomina nucleósido. El conjunto formado por un nucleósido y uno o varios grupos fosfato unidos al carbono 5' de la pentosa recibe el nombre de nucleótido. Se denomina nucleótido-monofosfato (como el AMP) cuando hay un solo grupo fosfato, nucleótido-difosfato (como el ADP) si lleva dos y nucleótido-trifosfato (como el ATP) si lleva tres.

Bases nitrogenadas

Las bases nitrogenadas conocidas son:
  • Adenina, presente en ADN y ARN
  • Guanina, presente en ADN y ARN
  • Citosina, presente en ADN y ARN
  • Timina, presente exclusivamente en el ADN
  • Uracilo, presente exclusivamente en el ARN

Características del ADN

Artículo principal: ADN.
El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.
Excepcionalmente, el ADN de algunos virus es monocatenario.

Estructuras ADN

  • Estructura primaria. Una cadena de desoxirribonucleótidos (monocatenario) es decir, está formado por un solo polinucleótido, sin cadena complementaria. No es funcional, excepto en algunos virus.
  • Estructura secundaria. Doble hélice, estructura bicatenaria, dos cadenas de nucleótidos complementarias, antiparalelas, unidas entre sí por medio de las bases nitrogenadas por medio de puentes de hidrógeno. Está enrollada helicoidalmente en torno a un eje imaginario. Hay tres tipos:
    • Doble hélice A, con giro dextrógiro, pero las vueltas se encuentran en un plano inclinado (ADN no codificante).
    • Doble hélice B, con giro dextrógiro, vueltas perpendiculares (ADN funcional).
    • Doble hélice Z, con giro levógiro, vueltas perpendiculares (no funcional); se encuentra presente en los parvovirus.

Características del ARN

El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.
Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia existen varios tipos de ARN:
  • El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma. Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica. Su vida es muy corta: una vez cumplida su misión, se destruye.
  • El ARN de transferencia existe en forma de moléculas relativamente pequeñas. La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo que da lugar a que se formen una serie de brazos, bucles o asas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína
  • El ARN ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.
                                         
PROTEINAS
Las proteínas son biomoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρωτεος ("proteios"), que significa "primario" o del dios Proteo, por la cantidad de formas que pueden tomar.
Por sus propiedades físico-químicas, las proteínas se pueden clasificar en proteínas simples (holoproteidos), que por hidrólisis dan solo aminoácidos o sus derivados; proteínas conjugadas (heteroproteidos), que por hidrólisis dan aminoácidos acompañados de sustancias diversas, y proteínas derivadas, sustancias formadas por desnaturalización y desdoblamiento de las anteriores. Las proteínas son indispensables para la vida, sobre todo por su función plástica (constituyen el 80% del protoplasma deshidratado de toda célula), pero también por sus funciones biorreguladora (forma parte de las enzimas) y de defensa (los anticuerpos son proteínas).1
Las proteínas desempeñan un papel fundamental para la vida y son las biomoléculas más versátiles y más diversas. Son imprescindibles para el crecimiento del organismo. Realizan una enorme cantidad de funciones diferentes, entre las que destacan:
Las proteínas están formadas por aminoácidos los cuales a su vez están formados por enlaces peptídicos para formar esfingocinas.
Las proteínas de todos los seres vivos están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.
Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son susceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado proteoma.
Proteínas

Recambio proteico
Casi todas las proteínas del organismo están en una constante dinámica de síntesis (1-2% del total de proteínas), a partir de aminoácidos, y de degradación a nuevos aminoácidos. Esta actividad ocasiona una pérdida diaria neta de nitrógeno, en forma de urea, que corresponde a unos 35-55 gramos de proteína. Cuando la ingesta dietética compensa a las pérdidas se dice que el organismo está en equilibrio nitrogenado.

El balance nitrogenado puede ser positivo o negativo. Es positivo cuando la ingesta nitrogenada supera a las pérdidas, como sucede en crecimiento, embarazo, convalecencia de enfermedades. Es negativo si la ingesta de nitrógeno es inferior a las pérdidas, tal como ocurre en: desnutrición, anorexia prolongada, postraumatismos, quemaduras, deficiencia de algún aminoácido esencial.

Vías de degradación de las proteínas
Dos son las vías por la que son degradadas las proteínas mediante proteasas (catepsinas).

1. Vía de la ubiquitina (pequeña proteína básica). Fracciona proteínas anormales y citosólicas de vida corta. Es ATP dependiente y se localiza en el citosol celular.

2. Vía lisosómica. Fracciona proteínas de vida larga, de membrana, extracelulares y organelas tales como mitrocondrias. Es ATP independiente y se localiza en los lisosomas.


HORMONAS
Las hormonas son sustancias secretadas por células especializadas, localizadas en glándulas de secreción interna o glándulas endocrinas (carentes de conductos), o también por células epiteliales e intersticiales cuyo fin es la de afectar la función de otras células. También hay hormonas que actúan sobre la misma célula que las sintetiza (autocrinas). Hay algunas hormonas animales y hormonas vegetales como las auxinas, ácido abscísico, citoquinina, giberelina y el etileno.
Son transportadas por vía sanguínea o por el espacio intersticial, solas (biodisponibles) o asociadas a ciertas proteínas (que extienden su vida media al protegerlas de la degradación) y hacen su efecto en determinados órganos o tejidos diana (o blanco) a distancia de donde se sintetizaron, sobre la misma célula que la sintetiza (acción autócrina) o sobre células contiguas (acción parácrina) interviniendo en la comunicación celular.

Tipos de hormonas

Según su naturaleza química, se reconocen tres clases de hormonas:

lunes, 9 de abril de 2012

Estructura química de las vitaminas y minerales
Las vitaminas y los minerales son nutrientes necesarios en cantidades muy pequeñas para algunas funciones metabólicas de gran importancia para la salud. Varias enfermedades causadas por deficiencias de vitaminas, como el escorbuto, se han reconocido desde la antigüedad, pero las estructuras químicas de muchas de las vitaminas solamente se descubrieron en el siglo XX a través de estudios sistemáticos de nutrición. En 1913 se reconoció la importancia de la vitamina A para la visión, y en 1932, se determinó que la vitamina C es necesaria para prevenir el escorbuto. Los párrafos siguientes describen algunos de los aspectos más importantes de las vitaminas y los minerales.
MINERALES
El término "minerales" se aplica a los elementos químicos presentes en las cenizas de tejidos calcinados. Los minerales necesarios para la dieta pueden estar presentes en sales inorgánicas, o pueden ser constituyentes de compuestos orgánicos. Por ejemplo, el magnesio se encuentra en la clorofila, que es el pigmento verde de las plantas. Hay seis minerales que se requieren en cantidades de gramos: sodio (Na), potasio (K), calcio (Ca), magnesio (Mg), fósforo (P) y cloro (Cl). Las necesidades diarias varían de 0.3 a 2.0 gramos por día. Nueve minerales, los oligoelementos, se requieren en pequeñas cantidades: cromo (Cr), cobre (Cu), yodo (I), hierro (Fe), flúor (F), manganeso (Mn), molibdeno (Mo), selenio (Se) y zinc (Zn). También se requiere el cobalto (Co), pero el requisito se expresa generalmente en términos del cobalto que contiene la vitamina B12. Todos los oligoelementos son tóxicos en niveles altos.
El Aporte Dietético Recomendado (ADR) es la cantidad de nutriente que se requiere para la salud óptima dependiendo del sexo, y la etapa de la vida.
VITAMINAS
En los países desarrollados, la deficiencia de vitaminas es principalmente el resultado de la pobreza, del alcoholismo, del uso de drogas, o de dietas de moda inadecuadas. La toxicidad de vitaminas (hipervitaminosis) por lo general resulta al tomar megadosis de vitamina A, D, B6, o niacina. Algunas vitaminas son solubles en grasa (vitaminas A, D, E y K) y otras son solubles en agua (vitaminas B y vitamina C). Las vitaminas B incluyen la biotina, ácido fólico, niacina, ácido pantoténico, riboflavina, tiamina, piridoxina y la vitamina B12. Los veganos, personas con dietas estrictamente vegetarianas, pueden desarrollar deficiencia de vitamina B12, a menos que consuman levaduras dieteticas o alimentos fermentados de tipo asiático como el miso y tempeh. Las dietas estrictamente vegetarianas tienden a ser bajas en calcio, hierro y zinc.
Biotina (Vitamina B7)
La biotina (vitamina B7) actúa como una coenzima en las reacciones de carboxilación que son esenciales para el metabolismo de las grasas y los carbohidratos. La ingesta adecuada para los adultos es de 30 microgramos díarios. Fuentes dieteticas de biotina incluyen yemas de huevo, hígado, verduras y cereales integrales.
Biotina
Ácido fólico (Vitamina B9)
El folato, también llamado vitamina B9, es necesario para la maduración de los glóbulos rojos y la síntesis de purinas y pirimidinas que se requieren para el desarrollo del sistema nervioso fetal. El consumo adecuado de ácido fólico antes de la concepción y durante el primer trimestre del embarazo ayuda a prevenir ciertos defectos del cerebro de la médula espinal como la espina bífida. El folato se absorbe en el duodeno y el yeyuno proximal. La dosis recomendada de folato es de 400 microgramos diarios y el límite superior es de 1000 microgramos. El folato no es tóxico. La deficiencia produce anemia megaloblástica indistinguible a la que ocurre por la deficiencia de vitamina B12. La deficiencia de folato en la vejez aumenta significativamente el riesgo de desarrollar demencia. El ácido fólico se encuentra en los guisantes secos, habas secas, levadura y verduras de hojas verdes como la espinaca, escarola y lechuga.
Ácido fólico
Niacina (vitamina B3)
La niacina (vitamina B3 o ácido nicotínico) es una subestructura química del dinucleótido de nicotinamida y adenina (NAD) y el fosfato de dinucleótido de nicotinamida y adenina (NADP), que son coenzimas en reacciones importantes de oxidación-reducción en el metabolismo celular. La deficiencia de niacina dietética causas pelagra, una enfermedad caracterizada por dermatitis, trastornos gastrointestinales, e inestabilidad mental. La deficiencia ocurre cuando la ingesta de niacina y el
aminoácido triptófano son extremadamente insuficientes. La deficiencia es mas común en zonas donde el maíz constituye una gran parte de la dieta. El pescado y los hongos son buenas fuentes de niacina.
Niacina
Ácido pantoténico (Vitamina B5)
El ácido pantoténico (vitamina B5) está ampliamente distribuido en los alimentos y se encuentra en grandes cantidades en los cereales integrales, legumbres, huevos, carne, hongos, levaduras, y el hígado. El ácido pantoténico es necesario para formar la coenzima-A (CoA), y es fundamental en el metabolismo y la síntesis de carbohidratos, proteínas y grasas. Los adultos necesitan alrededor de 5 miligramos diarios.
Ácido pantoténico (Vitamina B5)
Riboflavina (Vitamina B2)
La riboflavina (vitamina B2) participa en el metabolismo de los carbohidratos como una coenzima esencial en muchas reacciones de oxidación-reducción. La riboflavina no es tóxica. La deficiencia de riboflavina generalmente ocurre con otras deficiencias de vitaminas B. Los síntomas incluyen dolor de garganta, lesiones en los labios y en la mucosa de la boca, glositis, conjuntivitis, dermatitis seborreica, y anemia normocítica normocrómica. La riboflavina se encuentra en los hongos, las levaduras y carnes.
Riboflavina (Vitamina B2)
Tiamina (Vitamina B1)
La tiamina (vitamina B1) se encuentra en una gran variedad de alimentos. La tiamina participa en el metabolismo de los carbohidratos, grasas, aminoácidos, glucosa y el alcohol. La tiamina no es tóxica. La deficiencia de tiamina (que causa el beriberi) es más común en personas del tercer mundo que subsisten del arroz refinado o alimentos altos en hidratos de carbono. Los brotes de soja, la levadura dietetica, y los cereales fortificados son buenas fuentes de tiamina.
Tiamina (Vitamina B1)
Vitamina A
La vitamina A (retinol) es necesaria para la formación de la rodopsina, un pigmento de los fotorreceptores de la retina. La vitamina A ayuda a mantener los tejidos epiteliales. Normalmente, el hígado almacena el 90% de la vitamina A que ocurre en el cuerpo. Para usar la vitamina A, el organismo la pone en circulación unida a una proteína. Varios carotenoides, como el β-caroteno, que ocurren en legumbres verdes o amarillas y en las frutas de colores brillantes, se convierten en vitamina A. El Aporte Dietético Recomendado (ADR) es de 900 microgramos para los hombres, 700 micrograms para las mujeres. Los carotenoides se absorben mejor cuando las verduras se cocinan con grasas o aceites. La deficiencia de vitamina A afecta la inmunidad, y causa erupciones de la piel, sequedad de los ojos, y ceguera nocturna.
Retinol (Vitamina A)
Vitamina B12
Las cobalaminas son compuestos con actividad biológica de vitamina B12. Estos compuestos participan en el metabolismo de los ácidos nucleicos, la transferencia de metilo, la síntesis y reparación de mielina, y la formación de los glóbulos rojos. La vitamina B12 se libera en el ambiente ácido del estómago y hace un complejo con una proteína de la saliva llamada proteína R. Enzimas pancreáticas rompen el complejo en el intestino delgado, y el factor intrínseco secretado por las células parietales de la mucosa gástrica ayuda la absorción de vitamina B12 que ocurre en el íleon terminal. El Aporte Dietético Recomendado (ADR) es de 2.4 microgramos, la cantidad en 85 gramos de carne. La vitamina B12 se encuentra en almejas, ostras, pavo, pollo, carne de res y cerdo. La deficiencia de vitamina B12 casi siempre es el resultado de absorción inadecuada, pero también puede ocurrir en los veganos que exclusivamente comen alimentos vegetarianos y no toman suplementos vitamínicos. La deficiencia produce anemia megaloblástica, daña la médula espinal y el cerebro, y causa neuropatía periférica caracterizada por entumecimiento en las manos o los pies.
Cianocobalamina (Vitamina B12)
Vitamina B6
La vitamina B6 incluye un grupo de compuestos relacionados: piridoxina, piridoxal y piridoxamina. En el cuerpo, estos compuestos se convierten en fosfato de piridoxal, que actúa como una coenzima en muchas reacciones importantes en la sangre, el sistema nervioso central, y el metabolismo de la piel. La vitamina B6 es importante en la biosíntesis del grupo hemo y ácidos nucleicos, así como en el metabolismo de los lípidos, carbohidratos y aminoácidos. La vitamina B6 se encuentra en muchas verduras y carnes. Algunos cereales para el desayuno están fortificados con vitamina B6. Fuentes naturales de vitamina B6 incluyen la levadura de cerveza, las coles chinas (pak-choi), y los pimientos rojos y verdes.
Piridoxina (Vitamina B6)
Vitamina C
La vitamina C (ácido ascórbico) participa en la formación de colágeno, carnitina, hormonas, y aminoácidos. La vitamina C es esencial para la cicatrización de heridas y la recuperación de quemaduras. La vitamina C es un antioxidante que apoya la función inmune y facilita la absorción de hierro. En los países desarrollados, la deficiencia puede ocurrir por desnutrición, pero la deficiencia severa (que causa escorbuto) es poco frecuente. Los síntomas de deficiencia incluyen fatiga, depresión y defectos de tejido conectivos como la gingivitis, erupciones de la piel, hemorragias internas, o heridas que no cicatrizan. El Aporte Dietético Recomendado (ADR) es de 75 miligramos para las mujeres, y 90 miligramos para los hombres. El nivel máximo tolerable de vitamina C es aproximadamente de 2 gramos (2000 mg) por día. Cantidades mayores puede causar malestares estomacales y diarrea. La vitamina C se encuentra en las frutas y verduras frescas. Las frutas cítricas como las naranjas y los limones son una buena fuente de vitamina C.
Ácido ascórbico (Vitamina C)
Vitamina D
La vitamina D tiene dos formas principales: D2 (ergocalciferol) y D3 (colecalciferol). La vitamina D3 se sintetiza al exponer la piel a la luz ultravioleta del sol y también se encuentra en la dieta, principalmente en el aceite de hígado de pescado y las yemas de huevo. En algunos países desarrollados, la leche y otros alimentos están fortificados con vitamina D. La leche materna es baja en vitamina D, y solamente contiene el 10% de la cantidad en la leche de vaca fortificada. El requisito de vitamina D aumenta con la edad. La vitamina D es una prohormona con varios metabolitos activos que actúan como hormonas. La vitamina D3 se metaboliza en el hígado formando la forma circulante 25-hidroxivitamina D3, que luego se convierte por los riñones en la forma que tiene más actividad metabólica, 1,25-dihidroxivitamina D3 (1,25-dihidroxicolecalciferol o calcitriol). La exposición inadecuada al sol puede causar deficiencia de vitamina D. La deficiencia afecta la mineralización ósea, causando raquitismo en los niños, osteomalacia en los adultos y puede contribuir a la osteoporosis.

Colecalciferol
(Vitamina D3)
Metabolismo de la Vitamina D
El Instituto de Medicina recomienda un consumo de 200 Unidades Internacionales (UI) diarias desde el nacimiento hasta los 50 años, 400 UI de los 51 a los 70 años y 600 UI para los mayores de 70 años. Esta recomendación fué establecidas determinando el nivel de vitamina D suficiente para evitar la desmineralización ósea o el raquitismo. El nivel máximo tolerable de vitamina D es de 10,000 UI por día.
Ensayos aleatorios usando la ingesta recomendada de 400 UI de vitamina D diarios no han mostrado una reducción apreciable en el riesgo de fracturas, pero ensayos con 700 a 800 UI de vitamina D por día han mostrado reducir la incidencia de fracturas[8]. Los adultos deben consumir al menos 1000 UI por día de vitamina D para mantener los niveles de vitamina en el suero sanguineo que son eficaces para el fortalecimiento de los huesos.
Vitamina E
La vitamina E es un grupo de compuestos (los tocoferoles y tocotrienoles) que tienen actividades biológicas similares. La forma más activa es α-tocoferol, pero las formas β-, γ-, y δ- también tienen actividad biológica importante. Estos compuestos actúan como antioxidantes, que impiden la peroxidación lipídica de los ácidos grasos poliinsaturados en las membranas celulares. Los niveles de tocoferol en la plasma varían de acuerdo con los niveles de lípidos totales en la plasma. Normalmente, el nivel de α-tocoferol en la plasma es de 5 a 20 mcg/ml. La deficiencia de vitamina E es común en los países no desarrollados. La deficiencia de vitamina E causa degeneración de los axones de las neuronas (células nerviosas) y produce sintomas neurológicos y fragilidad de los glóbulos rojos que generalmente se diagnostica como anemia hemolítica. No se recomienda tomar suplementos de vitamina E porque los estudios han encontrado que la suplementación aumenta el riesgo de insuficiencia cardíaca y mortalidad general. La vitamina E se encuentra en las espinacas y muchos vegetales de hojas verdes. Buenas fuentes de vitamina E son las semillas de plantas aceitosas como el maní y las pepitas de girasol.
Alfa-tocoferol (Vitamina E)
Vitamina K
La vitamina K1 (filoquinona) es la forma dietética de la vitamina K. La grasa en la dieta aumenta su absorción. Las fórmulas infantiles contienen suplementos de vitamina K. La vitamina K2 se refiere a un grupo de compuestos (menaquinonas) sintetizada por bacterias en los intestinos, aunque la cantidad sintetizada no es suficiente para proveer el requisito mínimo de vitamina K. El Aporte Dietético Recomendado (ADR) es de 120 microgramos diarios para los hombres, y 90 para las mujeres. La vitamina K controla la formación de los factores de coagulación II (protrombina), VII, IX y X en el hígado. La deficiencia de vitamina K es rara en los adultos en buena salud porque la vitamina se encuentra ampliamente distribuida en las legumbres verdes como la espinaca.